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Simplicity is the ultimate sophistication
-- Leonardo da Vinci



Measuring Complexity

e Number of components
e Size of description
e Size of functional model

Have you ever thought... about whatever man builds, that all of man's
industrial efforts, all his calculations and computations, all the
nights spent over working draughts and blueprints, invariably
culminate in the production of a thing whose sole and guiding
principle 1s the ultimate principle of simplicity?
In any thing at all, perfection 1s finally attained, not when there 1s
no longer anything to add, but when there 1s no longer anything to
take away.

-- Antoine de Sainte Exupery, in "Wind, Sand, and Stars"



Engineered Simple Organisms

e modular

e understood

e malleable

e low complexity

e Start with a simple existing organism
e Remove structure until failure

o Rationalize the infrastructure

e Learn new biology along the way

The chassis and power supply for our computing




Some history...

Confusion over what PPLO/Mycoplasma were
> "The Microbe of pleuorpneumonia” Nocard 1896

1932 isolation of "PPLO.” Koch postulates.

1958 Klieneberger-Nobel identifies them as free
living bacterial species

Morowitz 1962 SciAm: “the smallest living cell”
1980 Gilbert effort to sequence M. capricolum
1982 Morowitz “complete understanding of life”
1996 Fraser et al. M. genitalium sequence

1999 Hutchison et al. Minimal genome set for
M. genitalium




Relative Complexity
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Genome size (Mbp)

From Giovannoni et al. 2005
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Choosing an organism
Safe

» BSL-1 organism -- insect commensal
Un-regulated
» Not a crop plant or domesticated animal pathogen

Fast growing
» 40 minute doubling time
> VS. six hours for M. genitalium

Convenient to work with
» Facultative anaerobe

Small genome
Known segquence
Complete annotation



The Mollicute Bibliome

Complete collection of mycoplasma related papers:

* 6,418 and counting

e All books and book chapters also

e Endnote & Refworks

e Downloaded .pdfs for articles > 1995

e Scanned articles and books, OCR with Abbyy Finereader
 Plans for a Google appliance search engine

e Collaboration for “shallow semantic” understanding

e people.csail.mit.edu/tk/mfpapers/  user=meso, pass=meso






Mesoplasma florum
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Culture Medium 1161

e Beef Heart infusion

e 4% Sucrose

e Fresh yeast culture broth
e 20% horse serum

e Penicillin

e Phenol red



Defined medium

Sodium phosphate Amino acids (minus asp, glu)
KCl Guanine
Magnesium sulfate Uracil
Thymine
Glycerol Adenine
Spermine
Glucose
Nicotinic acid
Thiamine BSA
Riboflavin Palmitic acid
Pyridoxamine Oleic acid

Thioctic acid
Coenzyme A



Synthesis vs. Import

Mycoplasma import virtually all small
biochemical molecules

Each import is done with a specific membrane
protein — some are capable of importing a class

Complexity is reduced if the import is simpler
than the synthesis
Example of the opposite:

» Glutamine - Glutamic acid
» Asparagine > Aspartic acid




Sequencing the genome

e First sequenced small portions of the genome
to test that we had the correct species
» Compared the results to Genbank entries

» Sequenced PTS system gene, identical to reported
sequence

» Sequenced 16S rRNA (unreported)

» Discovered identical to Mesoplasma entomophilum
16S rRNA sequence — probably the same species

= Genbank entry
e Measured genome size with pulse field gels

e Sequenced 12% of genome to see what we
were up against



PFGE of Mesoplasma
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I-Ceul digestion

e Special restriction enzymes cut only at 23S
rRNA sites

5° ..TAACTATAACGGTC CTAA"GGTAGCGA..3~
3° ..ATTGATATTGCCAG"GATT CCATCGCT..5"

Calculate the number of rRNA sites in the genome from
the number of cut fragments
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rRNA sequences

Primer F/R Sequence 5" to 3

o Degenerate primers TT T ew tes tee tee cvc ez wa wac
U2 F Tca rac tcc tac ggr agg cag ¢
U5 R Ttt gtg cgg gyy ccc gtc aat tc
Us R Faa agg agg trw tcc ayc csc ac
1300 F Taa tcg cga atc agc tat gtce
350 R Tgc ttc atc aga ctt tcg tcc
TDOO F Tgg agg tta aca ttg ata cag g
1150 R Tat gat gat ttg acg tca tcc

e The two rRNA sequences are different:
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M. sp bovine group 7
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Library creation

Randomly cut genomic DNA with EcoRI
Shotgun cloned into pUC18 vector
Sequenced the inserts (0.1 — 8 Kb)

Sheared the genomic DNA with a needle
End repaired

Cloned into defective lambda phage vector
Packaged vector into phage heads

Infected E. coli cells with phage
» ~ 40 Kb inserts



What we learned from partial
sequence

o Almost all “old friends”

o Little or no extra junk

e Inter-gene sequences small (-4 to 30 bp)
o Little transcriptional control

e High AT vs. GC content — 27% average GC

» 20% in typical genes, even less in control regions
» 40% in rRNA regions



Origin of Replication

dnaA binding site
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Whitehead Agreement

Whitehead agreed in January 2002 to sequence
the organism

Estimated to take about two hours of time on
their sequencers

> "Sure, we can do it Tom, but what do we do with
the rest of the day after the coffee break?”

“"How many other organisms like this are there?”
> 300

"Why don’t we sequence them all?”
Good draft available November 2002
Gaps closed July 2003 -- final November 2003



Gap closure

9 gaps remained
Long range PCR
Primer walking

One difficult sequence
» Poly A region 16-17 bp long
» Sequencing stuttered
» Reprime with aaaaaaaaaaaaaaaag

Repeat region 186 bp in surface lipoprotein
» Give up on accurate sequence, PCR for length

Final assembly verification



Genome characteristics

793281 base pairs
26.52% G + C

682 protein coding regions
» UGA for tryptophan
» No CGG codon or corresponding tRNA
» Classic circular genome
» oriC, terminator region, gene orientation

39 stable RNAs
> 29 tRNAs
» 2X 16S, 23S, 55
> RNAse-P, tmRNA, SRP



Standard Motifs

-10 present usually very highly conserved
» Often preceded by a "TG"” 1-2 bp upstream

Seldom a conserved -35 region
RBS is standard Shine-Dalgarno

Alternate RBS matches complementary region
of 16S rRNA UAACAACAU (Loechel 91)

Standard stem-loop terminators with loop TTAA
> 6-8 poly T tail in forward direction

dnaA box TTATCCACA
Four ribo-box sequences (Thi, Ile, Val, Guanine)



I S
o0x (%]
Stacking Energy
n R -
S8 “~x
Position Preference
. :
[ s
Annotations:

- -

o

S RN

N =
Global Direct Re
.
e -
1 Tw s
GC Skew
. A
0n (35
Percent AT
[ TR,
0x -
Resolution: 318

Cemter for zd:gﬂ Saquence Analyss

GENOMEATLAS



Understand the metabolism

Identify major metabolic pathways by finding
critical genes coding for known enzymes

Predict necessary enzymes which may not have
been found

Evaluate the list of unknown function genes for
candidates

Build the major metabolic pathway map of the
organism

Consider elimination of entire pathways
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How Simple is this?

Missing cell wall, outer membrane

Missing TCA cycle

Missing amino acid synthesis

Missing fatty acid synthesis

One sigma factor

Small humber of dna binding proteins

One insertion sequence, probably not active
One restriction system (Sau3Al-like)
CTG/CAG methylation (function?)

Evidence for shared protein function
» MDH/LDH (Pollack 97 Crit rev microbiol 23:269)



Minimal is not always simple

Shared function of parts
Overlapped genes
Tradeoff of import vs. synthesis

Example:
> Television set design

» Shared deflection coil, high voltage power supply,
isolated filament supply

» Three functions, a single circuit, a difficult
engineering, modeling, debugging, and repair task

how many genes have multiple functions



DNA Methylation

Bisulfite conversion of genomic DNA

Sequencing of converted DNA to identify
methylated C positions

Results: GATC sequences, as expected
Unexpected: CAG and CTG sequences



Current work

Array experiments
» Close species
» Transcriptional units, pseudo-genes
> TRASH

Protein species by LC/LC/MS/MS
Elimination of the restriction system

Plasmid system
» pBG7AU based

Recombination system
> Positive/negative selection

Yeast chromosome transfer

Genome edits to reduce size

Genome edits to modularize

Genome edits to eliminate complexity
Use as a construction chassis




Reconstruct the Genome

Use recombination techniques to edit the
genome

Eliminate unnecessary genes
Remove overlaps
Standardize promoters, ribosomal binding sites

Identify transcriptional and translational
regulators

Recode proteins to use a reduced portion of the
coding space

The code is 4 billion years old,
it’s time for a rewrite



YAC mutagenesis

Bring up YAC technology
» Spheroplasts, old YAC plasmid sequencing

Triple transform with MF chromosome and
» pRML1 (Spencer 92)
> pRML2
» Genome inactive except for ARS, telomeres, selection markers

Use yeast recombination systems for genome editing
Isolate and recircularize YAC to form a new genome
Lipid encapsulate genome into vesicles

Fuse vesicles with genome-killed wild type cells



Proteome

e Collaboration with Steve Tannenbaum / Yingwu Wang

e 2-D gels + MS spot ID
o LC/LC/MS/MS ID of trypsin digests
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Riboswitch Analysis
Collaboration with Ron Breaker / Adam Roth

Discovery of unique riboswitches specific for
GTP rather than dGTP

Found in no other sequenced genomes

Analysis of close relatives under way



Engineer plasmids

No known plasmids for this class of organism
Renaudin has made plasmids using the

chromosomal OriC as the replicative element
> Lartigue 03

M. mycoides has pADB201 and pBG7AU rolling
circle plasmids similar to pE194 (1082 bp)

We know the antibiotic sensitivities and have
working resistance genes



Kit Part the genome

o Make Biobrick parts from each gene, tRNA,
promoter, other part-like genome element

o Attempt to develop techniques for recombining
parts into coherent modules

e Develop techniques for assembling and
modeling the resulting structures
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Synthetic Biology

e An alternative to understanding complexity is to
remove it

e This complements rather than replaces
standard approaches

e Engineering synthetic constructs will be easier
» Enabling quicker more facile experiments

» Enabling deeper understanding of the basic
mechanisms

» Enabling applications in nanotechnology, medicine
and agriculture

Simplicity is the ultimate
sophistication
-- Leonardo da Vinci



