
Declarative Bioengineering

In any engineering discipline, it is essential that there is a standardization of components and
the ability to abstract away complexity. However, for a long time the field of bioengineering has
lacked this ability - one reason being that biological systems tend to be very intertwined in
complex and unknown ways.

In 2003, the presumption of complexity unique to biology was challenged in the final report of
the Synthetic Biology study at MIT [1]. This study greatly influenced the field of synthetic biology
over the next 16 years, with many of its predictions coming true.

A particular claim is made in that paper - that “A scalable development path for engineering
biology can be realized by combining (i) component standardization, (ii) substrate and
component abstraction, and (iii) design and fabrication decoupling.” In particular, we will be
focusing on the idea of component abstraction. The paper further claims a “need to promote the
characterization and representation of standard biological parts in ways that insulate relevant
physical characteristics from overwhelming physical detail.”

In 2008, a concrete example of this idea was published [2]. In it, a “device” was built from
standardized DNA parts, which themselves had standardized characterization. This particular
example, however, makes a fundamental flaw: it does not abstract function from sequence, it
only hides it behind another layer.

In order to realize true component abstraction, functions of biological devices must be defined
separately from their implementation. Practically, that means devices are never defined as a
sequence. Devices should be defined as objective measurable outputs of genetic systems. For
example, BBa_F2620 (the device built in the 2008 paper) would not have a datasheet, the
device itself IS the datasheet, with BBa_F2620 being a possible instantiation (or assembly) of
that device.

This then creates a problem: how does one go from standard DNA parts to a functional device
in a living creature? To accomplish that, I propose the development of “genetic architectures”.
For example, the architecture for a GFP expression cassette could be “A promoter - a RBS
- a GFP - a terminator”, which itself is an extension of the general expression
architecture, “A promoter - a RBS - a CDS - a terminator”.

The most important part of genetic architectures is that they fit logical patterns, which may be
formalized using Logic Programming [3]. This then fits the final part in the puzzle of making
genetic engineering into a type of language: While DNA parts have been standardized (words)
and measurements have been standardized (sentences/intention), genetic architectures finally
standardize grammar. This language can translate human intent into operations done by
computers and robots to create biology.



I wish to change the engineering of biology from an imperative programming language (ie, how
to accomplish a goal) to a declarative programming language (ie, what goal to accomplish), due
to the simple observation that humans are good at “what” and software is good at “how”.

Fig 1. The abstraction layers behind the proposed declarative language. Directed evolution, at
the end, can be used to refine devices.

I propose the creation of a simple FreeGenes collection that can directly be used as the test set
for creation of a declarative bioengineering language. It will include a few different sugar
inducible E.coli promoters, a few different BCDs[4] and RBSs, a few different fluorescent
proteins, and a few different terminators. The objective would be to define a simple generic
platform for using this language, and then use that platform to implement sugar biosensor
devices. This platform could then be used to implement an arbitrary number of architectures and
devices from the FreeGenes part repository.

This collection of parts was initiated by Keoni Gandall.

There are no intellectual property concerns surrounding this collection.

PS: There are many aspects that I did not mention here, for example, for outputs of genetic
architectures to be sorted using neural nets / statistics trained from previous experiments, or for
device instantiations to be refined using directed evolution. However, within the framework I am
proposing, there are direct paths to implementing all those aspects within code.

[1]
https://dspace.mit.edu/bitstream/handle/1721.1/38455/SyntheticBiologyStudy.pdf?sequence=1&
isAllowed=y
[2] https://sci-hub.tw/https://doi.org/10.1038/nbt1413
[3] https://en.wikipedia.org/wiki/Logic_programming
[4] https://sci-hub.tw/https://doi.org/10.1038/nmeth.2404

https://dspace.mit.edu/bitstream/handle/1721.1/38455/SyntheticBiologyStudy.pdf?sequence=1&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/38455/SyntheticBiologyStudy.pdf?sequence=1&isAllowed=y
https://sci-hub.tw/https://doi.org/10.1038/nbt1413
https://en.wikipedia.org/wiki/Logic_programming
https://sci-hub.tw/https://doi.org/10.1038/nmeth.2404

